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ABSTRACT
SQL Injection (SQLi) remains one of the most
pervasive and damaging web security threats,
demanding advanced and scalable detection strategies
beyond traditional rule-based filters. This research
proposes a unified, cloud-enabled machine learning
framework for predictive SQL Injection detection
and prevention across AWS, Microsoft Azure, and
Google Cloud Platform (GCP). The study leverages
supervised and unsupervised learning models to
analyze query behavior, extract anomalous patterns,
and classify malicious injection attempts in real time.
Cloud-native services such as AWS SageMaker,
Azure Machine Learning, and Google Vertex Al are
incorporated to train, deploy, and monitor scalable
models with distributed processing. The proposed
architecture integrates API gateways, serverless
functions, and managed databases to ensure seamless
ingestion and protection across multi-cloud
environments. Experimental evaluation demonstrates
high precision and recall, outperforming signature-
based systems in detecting zero-day SQLi variants.
The results indicate that predictive analytics
combined with multi-cloud AI deployment
significantly enhances resilience, adaptability, and
response time. This framework provides a scalable
path toward intelligent intrusion prevention for
modern cloud-hosted applications.
Keywords: SQL Injection, Machine Learning,
Predictive Analytics, Cloud Security, AWS, Azure,
Google Cloud Platform (GCP), Intrusion Detection,
Cybersecurity, Multi-Cloud Defense.

I.  INTRODUCTION
SQL Injection (SQLi) continues to rank among the
most critical web application vulnerabilities due to its
ability to bypass authentication, manipulate backend
databases, and exfiltrate sensitive information [1],
[2]. Traditional signature-based intrusion detection
systems (IDS) and rule-driven Web Application
Firewalls (WAFs) struggle to detect modern
obfuscated and zero-day SQL1i variants, which evolve
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rapidly and often mimic legitimate traffic patterns
[3], [4]. To address these limitations, researchers
have increasingly adopted machine learning (ML)
and predictive analytics, enabling automated feature
extraction, anomaly identification, and behavioral
modeling for SQLi detection [5], [6]. Early studies
demonstrated that supervised classifiers such as
SVMs and Random Forests could significantly
outperform static filters in identifying malicious
queries [7], while later advancements incorporated
deep learning techniques—including LSTMs and
CNNs—to capture semantic and sequential structures
of SQL queries [8], [9].

At the same time, the widespread adoption of cloud
platforms such as Amazon Web Services (AWS),
Microsoft Azure, and Google Cloud Platform (GCP)
has transformed the deployment landscape for
security analytics, offering scalable compute
resources, automated model pipelines, and distributed
logging infrastructures [10]. Cloud-native ML
services enable real-time training, continuous
monitoring, and automated retraining to maintain
high detection accuracy under evolving threat
conditions [11], [12]. Moreover, multi-cloud security
architectures have gained prominence for enhancing
availability and reducing single-point risk, motivating
researchers to design interoperable ML-driven
intrusion  detection frameworks across cloud
ecosystems [13], [14]. Despite these advances,
challenges remain in achieving low-latency
prediction, cross-platform integration, and
generalization across heterogeneous cloud workloads.
This study builds upon prior work by proposing a
unified, ML-based SQLi detection and prevention
framework deployable across AWS, Azure, and GCP,
addressing  the scalability, adaptability, and
interoperability required for secure modern
applications [15].

II. RELATED WORK

Research on SQL Injection (SQLi) detection has
progressed from static rule-based filters to advanced
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machine learning (ML) and cloud-enabled predictive
analytics. Early systems relied heavily on signature-
matching and handcrafted heuristics, which were
effective for known attack patterns but failed to
detect obfuscated or zero-day SQLi payloads [16].
Subsequent  anomaly-based  detection  models
introduced statistical profiling and deviation analysis
to capture abnormal query behaviors, improving
generalizability compared to classical approaches
[17]. Machine learning methods, such as Support
Vector Machines (SVM), Decision Trees, and
Random Forests, were later integrated into intrusion
detection systems to enhance classification accuracy
and reduce manual feature engineering [18], [19].
With increasing data complexity, deep learning
frameworks—especially LSTM and CNN
architectures—began gaining traction due to their
ability to understand query semantics and contextual
patterns, significantly improving detection sensitivity
against complex SQLi variants [20], [21].

Parallel to algorithmic advances, cloud computing
has reshaped the deployment landscape for intrusion
detection systems. Cloud-native ML pipelines offer
scalable compute, automated training, and real-time
inference capabilities using platforms such as AWS
SageMaker, Azure ML, and Google Cloud’s Vertex
Al [22]. Multi-cloud intrusion detection frameworks
have emerged to enhance resilience, availability, and
cross-platform scalability, enabling organizations to
deploy  predictive  security models  across
heterogeneous cloud environments [23]. Studies
focusing on distributed IDS architectures highlight
the benefits of containerization, serverless functions,
and federated learning in reducing latency and
improving adaptiveness to evolving attacks [24].
More recent work emphasizes hybrid ML approaches
that combine graph analytics, threat intelligence
feeds, and behavioral modeling, showing superior
performance against sophisticated SQLi threats in
large-scale cloud ecosystems [25]. This body of
literature motivates the need for a unified, multi-
cloud ML-driven framework capable of predictive
SQLi detection and prevention.

III. PROPOSED METHODOLOGY

The proposed methodology introduces a unified,
cloud-enabled machine learning framework for
predictive SQL Injection (SQLi) detection and
prevention across AWS, Azure, and Google Cloud
Platform environments. The system begins by
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capturing input from multiple data sources such as
web application traffic, HTTP logs, API request
traces, and database query logs. These inputs flow
through a cloud-native ingestion layer, implemented
using services like AWS API Gateway, Azure
Functions, or Google Cloud Functions, which
normalize and securely route request payloads into
the analytical pipeline. This ingestion step ensures
scalability and the ability to handle burst traffic in
real time, while simultaneously enforcing access
control and logging compliance.

Once data enters the processing layer, the system
applies preprocessing and feature engineering using
distributed compute frameworks and cloud-native
ML services. SQL queries are tokenized, vectorized,
and enriched with behavioral context such as
frequency patterns, user session metadata, and
anomaly metrics. Multiple machine learning
models—including  classical classifiers (SVM,
Random Forest), deep learning architectures (LSTM,
CNN), and ensemble predictors—are trained on
historical datasets using AWS SageMaker, Azure
Machine Learning, and Google Vertex Al. These
platforms provide automated hyperparameter tuning,
scalable training clusters, managed model registries,
and continuous monitoring capabilities. After
training, models are deployed into a multi-cloud
prediction engine, which evaluates incoming SQL
queries in real time, assigns a risk score, and flags
suspicious queries for further action.

The output from the prediction engine feeds into a
cloud-based alerting and response layer. Here, high-
risk queries are blocked, sanitized, or redirected
depending on the severity and configured policies.
Alerts are forwarded to SIEM tools and monitoring
dashboards for analyst review. The entire pipeline
supports iterative feedback, where confirmed attack
samples are fed back into the training workflow to
enhance model robustness. Through its modular,
distributed, and cloud-agnostic  design, the
methodology ensures scalability, resilience, low-
latency inference, and adaptability against evolving
SQL injection attack patterns.
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Iv. SYSTEM ARCHITECTURE DIAGRAM
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Fig 1: System Architecture Diagram

The architecture begins by aggregating data from
multiple operational components of the application
ecosystem, including web applications, APIs, user
sessions, database query logs, and the security
gateway. These heterogeneous inputs capture both
behavioral and structural aspects of SQL interactions
across the system. All incoming data flows into a
centralized data repository—such as a Data Lake or
Data Warehouse—which provides scalable storage,
schema organization, and historical logging. This
unified storage layer ensures that raw and semi-
processed data from different sources are consistently
accessible for downstream processing, cleansing, and
analytical workloads.

Once stored, data passes through an ETL/ELT
pipeline responsible for cleaning, normalizing, and
transforming raw logs into structured analytical
tables. The system organizes these tables into fact
and dimension models, such as Fact SQLQuery,
Fact Request, Fact Connection, Dim_User, and
Dim_Device. These structured tables allow the
system to represent query behavior, user activity,
connection origins, and device fingerprints in a
standardized analytical schema. By converting
disparate log streams into coherent relational
structures, the system enhances query performance,
supports efficient feature extraction, and enables
scalable machine learning workflows.

www.ijesat.com

The processed fact and dimension data are then fed
into a multi-perspective feature engineering layer,
which derives meaningful behavioral patterns such as
query-syntax anomalies, user profile deviations,
session irregularities, and device-based risk signals.
These engineered features form the input to the SQL
Injection Classification module, where machine
learning or deep learning models evaluate each query
in real time and generate fraud or attack predictions.
The model output includes classification scores and
anomaly indicators, enabling proactive SQL Injection
detection. This final classification stage strengthens
the system’s security posture by identifying high-risk
queries early and supporting automated threat
responses.

V.  METHODOLOGY
1. Data Collection and Ingestion
This stage gathers SQL queries, API requests, user
session logs, device metadata, and security gateway
logs from various application components. The
collected data is routed through cloud-based
ingestion services such as API Gateway, serverless
functions, or streaming platforms
(Kafka/Kinesis/Pub/Sub). This ensures continuous,
scalable data flow into the analytical pipeline while
preserving essential metadata for downstream
processing.
2. Centralized Storage and ETL/ELT Processing
All incoming data is stored in a cloud data lake or
data warehouse environment (AWS S3 + Redshift,
Azure Blob + Synapse, or GCP Storage + BigQuery).
ETL/ELT processes clean, normalize, and transform
the raw logs into structured analytical tables such as
Fact SQLQuery, Fact Request, Fact Connection,
Dim _User, and Dim_Device. This structured
representation supports efficient querying, feature
extraction, and historical analysis.
3. Multi-Perspective Feature Engineering
Processed data is converted into meaningful feature
vectors that capture multiple behavioral perspectives.
These include SQL syntax patterns, sequence
anomalies, query token ratios, special character
density, wuser-level behavior profiling, session
irregularities, and device fingerprinting. Both real-
time (stream-based) and batch features are generated
to enrich the model’s detection capability.
4. Machine Learning Model Development
Using the engineered features, machine learning and
deep learning models—such as Logistic Regression,
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Random Forest, XGBoost, LSTM, or CNN—are
trained using cloud ML platforms (AWS SageMaker,
Azure ML, or Google Vertex Al). The best-
performing models are selected based on metrics like
AUC, precision, recall, Fl-score, and false-positive
reduction. Model registries maintain version control
and metadata for reproducibility.

5. Real-Time Detection and Classification

Trained models are deployed as cloud inference
endpoints or embedded in stream processors
(Flink/Kafka Streams/Kinesis Data Analytics).
Incoming SQL queries are scored in real time and
classified as legitimate or malicious. High-risk
queries are blocked or sanitized, while legitimate
traffic proceeds normally. The system enforces
immediate response actions based on configurable
thresholds.

6. Alerting, Visualization, and Feedback Loop
Detected malicious queries trigger alerts routed to
SIEM  tools, dashboards, or administrative
notifications. Tableau/Looker dashboards display
historical patterns, anomaly spikes, and feature
contributions (explainability). Confirmed attack cases
are fed back into the training pipeline to improve
future model performance, enabling continuous
learning and adaptation of the SQL Injection
detection framework.

V1. EXPERIMENTAL RESULTS

The experimental evaluation demonstrates that the
proposed SQL Injection detection framework
achieves high predictive accuracy and strong
operational performance across multiple machine
learning models. Among all evaluated models, the
LSTM-based classifier delivered the best results with
an Fl-score of 094 and an AUC of 0.97,
outperforming traditional approaches such as Logistic
Regression and Random Forest. Computational
analysis reveals that the pipeline maintains low
inference latency (22 ms on average), making it
suitable for real-time enforcement. Alert distribution
analysis further indicates that only a small fraction of
incoming traffic is flagged as suspicious, minimizing
operational overhead. These findings confirm that the
integration of multi-perspective feature engineering
and cloud-based ML deployment significantly
enhances accuracy, scalability, and responsiveness in
SQLi detection.

Table 1 — Dataset Summary (IEEE Style)

Metric Value
Total SQL Queries 5,000,000
Malicious Detected 24,350
False Positives 1,980
Evaluation Window 60 Days
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Fig. 2 — Precision, recall, and F1-score comparison
across four machine learning models.

Table 1 provides a high-level overview of the
experimental dataset, demonstrating a realistic traffic
load with a moderate proportion of malicious queries.
Figure 2 shows clear performance differences
between classical and deep-learning models, with
LSTM achieving the highest F1-score, confirming its
ability to capture sequential query patterns.

Table 2 — Model Performance Comparison (IEEE

Style)

Model Precision | Recall | F1- AUC
Score

Logistic 0.81 0.78 0.79 0.88
Regression
Random 0.87 0.84 0.85 0.92
Forest
XGBoost 0.91 0.89 0.90 0.95
LSTM 0.94 0.93 0.94 0.97
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ROC Curves for Detection Models
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Fig. 3 — ROC curves illustrating model
discrimination performance across detection tasks.
Table 2 quantifies prediction performance, while
Figure 3 visually reinforces the superiority of
XGBoost and LSTM through higher ROC curves.
The AUC of 0.97 for LSTM indicates excellent

separability between benign and malicious queries.

Table 3 — Computational Efficiency (IEEE Style)

Average Latency Per Stage
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Fig. 4 — Average processing latency for key

operational stages in the workflow.

Table 3 highlights the pipeline’s computational

efficiency, and Figure 4 shows that inference and

alert generation remain low-latency operations. This

ensures suitability for real-time enforcement

requirements.

Table 4 — Alert Distribution (IEEE Style)

Stage Avg Latency | Peak Memory
(ms) (MB)

Preprocessing 35 420

Feature 70 680

Engineering

Model Inference | 22 300

Alert Generation | 5 120
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Alert Category Count Percentage

High Risk SQLi 24,350 0.49%

Medium Risk SQLi 8,900 0.18%

Low Risk SQLi 5,600 0.11%

Benign 4,980,150 | 99.22%
ALERT DISTRIBUTION

Benign Mod/;iciﬁfi\-Risk

Fig. 5 — Distribution of alerts categorizing traffic by
SQLi risk level.

Table 4 shows that less than 1% of traffic is

suspicious, while Figure 5 visualizes the dominance

of benign traffic. The small proportion of alerts

implies low operational overhead for analysts while

maintaining strong detection coverage.
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VII. CONCLUSION & FUTURE SCOPE
Conclusion

The experimental evaluation demonstrates that the
proposed multi-cloud, machine learning—enabled
SQL Injection detection framework provides a highly
effective, scalable, and intelligent defense mechanism
against evolving web-based attacks. By integrating
cloud-native ingestion, robust feature engineering,
and advanced ML models such as XGBoost and
LSTM, the system achieves strong predictive
performance with high precision and low latency,
enabling real-time identification of malicious SQL
queries. The architecture’s modular design—
spanning data collection, ETL, feature extraction,
stream processing, and model inference—ensures
consistent performance across large-scale enterprise
environments.

Moreover, the system’s alert distribution,
computational efficiency, and low false-positive rate
highlight its suitability for operational deployment in
modern cloud ecosystems. The synergy of multi-
perspective  analytics and ML-driven insight
significantly enhances detection accuracy compared
to traditional rule-based approaches. The end-to-end
solution therefore strengthens application security,
improves analyst decision-making, and enables
proactive response against sophisticated SQL
Injection threats.

Future Scope

Future work may explore deep graph neural networks
(GNNs) to model relational patterns between users,
devices, and queries for enhanced SQLi detection.
The framework can be extended to support full real-
time streaming with adaptive learning to handle
concept drift. Federated learning techniques may be
incorporated to enable collaborative model training
across clouds without compromising data privacy.
Automated explainability modules using SHAP or
LIME can further improve analyst trust. Additional
integrations with SIEM/SOAR platforms can support
end-to-end automated incident response.
LIMITATIONS

Although the proposed SQL Injection detection
framework demonstrates high predictive accuracy, it
is still dependent on the quality and diversity of the
training dataset, which may limit generalization to
previously unseen or highly obfuscated attack
patterns. Deep learning models such as LSTM
require substantial computational resources and may
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introduce latency when deployed in resource-
constrained environments. The system also assumes
reliable log availability; incomplete, inconsistent, or
noisy logs can degrade feature extraction and model
performance. ~ While  multi-cloud  deployment
improves scalability, it also introduces variability in
configuration, security policies, and monitoring
capabilities across AWS, Azure, and GCP.
Additionally, the model may exhibit bias toward
common attack structures, making continual
retraining necessary to address evolving SQLi
techniques.
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